
The LAM/MPI Checkpoint/Restart Framework: System-Initiated
Checkpointing

Sriram Sankaran, Jeffrey M. Squyres, Brian Barrett, Andrew Lumsdaine
Open Systems Laboratory, Indiana University�
ssankara,jsquyres,brbarret,lums � @lam-mpi.org

Jason Duell, Paul Hargrove, Eric Roman
Lawrence Berkeley National Laboratory�

jcduell,phhargrove,eroman � @lbl.gov

Abstract

As high-performance clusters continue to grow in size
and popularity, issues of fault tolerance and reliability are
becoming limiting factors on application scalability. To ad-
dress these issues, we present the design and implementa-
tion of a system for providing coordinated checkpointing
and rollback recovery for MPI-based parallel applications.
Our approach integrates the Berkeley Lab BLCR kernel-
level process checkpoint system with the LAM implementa-
tion of MPI through a defined checkpoint/restart interface.
Checkpointing is transparent to the application, allowing
the system to be used for cluster maintenance and schedul-
ing reasons as well as for fault tolerance. Experimental re-
sults show negligible communication performance impact
due to the incorporation of the checkpoint support capabil-
ities into LAM/MPI.

1 Introduction

In recent years, the supercomputing community has seen
a significant increase in the CPU count of large-scale com-
putational resources. Seven of the top ten machines in the
November 2002 Top500 [1] list utilize at least 2000 pro-
cessors. With machines such as ASCI White, Q, and Red
Storm, the processor count for the largest systems is now
on the order of 10,000 processors—and this increasing trend
will only continue. While the growth in CPU count has pro-
vided great increases in computing power, it also presents
significant reliability challenges to applications. In particu-
lar, since the individual nodes of these large-scale systems
are comprised of commodity hardware, the reliability of the
individual nodes is targeted for the commodity market. As
the node count increases, the reliability of the parallel sys-

tem decreases (roughly proportional to the node count). In-
deed, anecdotal evidence suggests that failures in the com-
puting environment are making it more difficult to complete
long-running jobs and that reliability is becoming a limiting
factor on scalability.

The Message Passing Interface (MPI) is a de facto stan-
dard for message passing parallel programming for large-
scale distributed systems [12, 14, 16, 17, 24, 30]. Imple-
mentations of MPI comprise the middleware layer for many
large-scale high-performance applications [3, 15, 18, 37].
However, the MPI standard itself does not specify any par-
ticular kind of fault tolerant behavior. In addition, the most
widely used MPI implementations have not been designed
to be fault-tolerant.

To address these issues, we present the design and im-
plementation of a system for providing coordinated check-
pointing and rollback recovery for MPI-based parallel ap-
plications. Several factors were considered for our design.

Generality. Our design is an extension of the compo-
nent framework comprising the most recent version of
LAM/MPI [32, 33]. In general, the framework itself can
be used to support a wide variety of fault tolerance mecha-
nisms; we report on one such mechanism here. In particu-
lar, our approach integrates the Berkeley Lab BLCR kernel-
level process checkpoint system with the LAM implemen-
tation of MPI through a defined checkpoint/restart interface.

Transparency. The particular implementation of coordi-
nated checkpointing and rollback recovery that we report
here was designed with transparency in mind. That is, our
system can be used to checkpoint parallel MPI applications
without making any changes to the application code. Invol-
untary checkpointing is consequently supported.

1



Performance. As shown by our experimental results, the
addition of checkpointing support capabilities to LAM/MPI
has insignificant impact on its message passing perfor-
mance. And, since checkpoint support is run-time se-
lectable, it can be bypassed altogether for applications that
do not wish to use it.

Portability. Our implementation has been incorporated
into the most recent release of LAM/MPI, a widely used
and industrial strength open-source implementation of MPI.
Although the BLCR checkpointer is currently available for
Linux, LAM/MPI will operate on almost all POSIX sys-
tems. The general approach taken in this work will allow
it to be easily extended to other single process checkpoint
systems and to other operating systems.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses background information and related work.
The design of our system is given in Section 3 and details
of its implementation in Section 4. Performance results are
provided in Section 5. Future work and our conclusions are
given in Sections 6 and 7.

2 Background

2.1 Checkpoint-Based Rollback Recovery

In the context of message-passing parallel applications,
a global state is a collection of the individual states of all
participating processes and of the states of the communica-
tion channels. A consistent global state is one that may oc-
cur during a failure-free, correct execution of a distributed
computation. Within a consistent global state, if a given
process has a local state that indicates a particular message
has been received, then the state of the corresponding sender
must indicate that the message has been sent [4]. Figure 1
shows two examples of global states, one of which is con-
sistent, and the other of which is inconsistent. A consistent
global checkpoint is a set of local checkpoints, one for each
process, forming a consistent global state. Any consistent
global checkpoint can be used to restart process execution
upon failure.

Checkpoint/restart techniques for parallel jobs can be
broadly classified into three categories: uncoordinated, co-
ordinated, and communication-induced. (These approaches
are analyzed in detail in [10].)

2.1.1 Uncoordinated Checkpointing

In the uncoordinated approach, the processes determine
their local checkpoints independently. During restart, these
processes search the set of saved checkpoints for a consis-
tent state from which execution can resume. The main ad-
vantage of this autonomy is that each process can take a

P

P

P

0

1

2

P

P

P

0

1

2

m

m

m
 1

 2

 1

(a) (b)
TimeTime

m
 2

Figure 1: A message-passing system consisting of 3 pro-
cesses. (a) shows an example of a consistent global state
where message ��� is recorded as having been sent by pro-
cess

���
but not yet received by process

�
� , and (b) shows

an example of an inconsistent global state in which mes-
sage ��� is recorded as having been received by

�
� but not

yet sent by
�
� .

checkpoint when it is most convenient. For efficiency, a
process may take checkpoints when the amount of state in-
formation to be saved is small [39]. However, this approach
has several disadvantages. First, there is the possibility of
the domino effect [26] which causes the system to rollback
to the beginning of computation, resulting in the loss of a
large amount of useful work. Second, a process may take
checkpoints that will never be part of a global consistent
state. Third, uncoordinated checkpointing forces each pro-
cess to maintain multiple checkpoints, thereby incurring a
large storage overhead.

2.1.2 Coordinated Checkpointing

With the coordinated approach, the determination of local
checkpoints by individual processes is orchestrated in such
a way that the resulting global checkpoint is guaranteed to
be consistent [4, 9, 19, 35, 38]. Coordinated checkpoint-
ing simplifies recovery from failure and is not susceptible
to the domino effect, since every process always restarts
from its most recent checkpoint. Also, coordinated check-
pointing minimizes storage overhead since only one perma-
nent checkpoint needs to be maintained on stable storage.
The main disadvantage of coordinated checkpointing, how-
ever, is the large latency involved in saving the checkpoints,
since a global checkpoint needs to be determined before the
checkpoints can be written to stable storage.

2.1.3 Communication-Induced Checkpointing

The communication-induced checkpointing approach
forces each process to take checkpoints based on protocol-
related information piggybacked on the application

2



messages it receives from other processes [27]. Check-
points are taken such that system-wide consistent state
always exists on stable storage, thereby avoiding the
domino effect [2]. Processes are allowed to take some
of their checkpoints independently. However, in order
to determine a consistent global state, processes may be
forced to take additional checkpoints. The checkpoints that
a process takes independently are called local checkpoints,
while those that a process is forced to take are called forced
checkpoints. The receiver of each application message
uses the piggybacked information to determine if it has to
take a forced checkpoint. The forced checkpoint must be
taken before the application may process the contents of
the message, possibly incurring high latency and overhead.
In contrast with coordinated checkpointing, no special
coordination messages are exchanged in this approach.

2.2 Other Uses of Checkpoint/Restart

The ability to checkpoint and restore applications has a
number of uses in a parallel environment besides fault tol-
erance.

Gang scheduling—checkpointing and restarting all the
processes that are part of a single parallel application—
allows for more flexible scheduling. For example, jobs with
large resource requirements can be intermittently scheduled
at off-peak times using the checkpoint/restart capability.
Without intermittent scheduling such large jobs may use all
available resources for long periods—locking out other jobs
during that time. Hence, the ability to stop and resume large
jobs allows scheduling of other available jobs in such a way
that the overall system throughput is maximized.

Process migration is another feature that is made pos-
sible by the ability to save a process image. If a process
needs to be moved from one node to another (because im-
minent failure of a node is predicted or for scheduling rea-
sons) it is possible to transfer the state of the processes run-
ning on that node to another node by writing the process
image directly to a remote node. The process can then re-
sume execution on this new node, without having to kill
the entire application and start it all over again. Process
migration has also proved extremely valuable for systems
whose network topology constrains the placement of pro-
cesses in order to achieve optimal performance. The Cray
T3E’s interconnect, for instance, uses a three-dimensional
torus that requires processes that are part of the same par-
allel application to be placed in contiguous locations on
the torus. This results in fragmentation as jobs of differ-
ent sizes enter and exit the system. With process migration,
jobs can be packed together to eliminate fragmentation, re-
sulting in significantly higher utilization [40]. Networks
with such constraining topologies have become less com-
mon recently, however IBM’s Blue Gene/L project plans to

constrain communication among processors [36], and more
cluster projects may use them in the future.

2.3 Related Work

Checkpoint/restart for sequential programs has been
somewhat well studied. Libckpt [25] is an open source li-
brary for transparent checkpointing of Unix processes. It
contains support for incremental checkpoints, in which only
pages that have been modified since the last checkpoint are
saved. Condor [22, 23] is another system that provides
checkpointing services for single process jobs on a num-
ber of Unix platforms. The CRAK (Checkpoint/Restart
As a Kernel module) project [41] provides a kernel im-
plementation of checkpoint/restart for Linux. CRAK also
supports migration of networked processes by adopting
a novel approach to socket migration. BLCR (Berkeley
Lab’s Checkpoint/Restart) [8] is a kernel implementation of
checkpoint/restart for multi-threaded applications on Linux.
Libtckpt [7] is a user-level checkpoint/restart library that
can also checkpoint POSIX threads applications.

In the context of parallel programs, there are ven-
dor implementations of checkpoint/restart for MPI applica-
tions running on some commercial parallel computers [6].
Some implementations are also available for checkpoint-
ing MPI applications running on commodity hardware.
CoCheck [34] is one such tool for PVM and MPI appli-
cations. It is built into a native MPI library called tuMPI
and layered on top of a portable single-process checkpoint-
ing mechanism [13, 21]. CoCheck uses a special process
to coordinate checkpoints, that sends a checkpoint request
notification to all the processes belonging to the MPI job.
On receiving this trigger, each process sends a “ready mes-
sage” (RM) to all other processes, and stores all incoming
messages from each process until all the RMs have been re-
ceived, in specially reserved buffers. The underlying check-
pointer then saves the execution context of each process to
stable storage. At restart, a receive operation first checks
the buffers for a matching message. If there is such a mes-
sage, it is retrieved from the buffer. Otherwise, a real re-
ceive operation fetches the next matching message from the
network. One drawback to CoCheck is that a checkpoint
request cannot be processed when a send operation is in
progress. Consequently, if a matching receive has not been
posted by the peer, there is no finite bound on the time taken
for the checkpoint request to complete. Also, checkpointing
could change the semantics of MPI’s synchronous sends in
CoCheck: an anticipated receive could cause the return of
the send instead of the actual receive by the application.

A checkpoint/restart implementation for MPI at NCCU
Taiwan uses a combination of coordinated and uncoordi-
nated strategies for checkpointing MPI applications [20]. It
is built on top of the NCCU MPI implementation [5], and

3



uses Libckpt as the back-end checkpointer. Checkpointing
of processes running on the same node is coordinated by a
local daemon process, while processes on different nodes
are checkpointed in an uncoordinated manner using mes-
sage logging.

A limitation of the existing systems for checkpointing
MPI applications on commodity clusters is that they are im-
plemented using MPI libraries that primarily serve as re-
search platforms and are not widely used. Another draw-
back of some of these checkpoint/restart systems is that they
are tightly coupled to a specific single-process checkpointer.
Since single-process checkpointers usually support a lim-
ited number of platforms, this limits the range of systems
on which MPI applications can be checkpointed to those
that are supported by the underlying checkpointer.

3 Design

This section presents an overview of the design of the
checkpoint/restart system in LAM/MPI. This implementa-
tion does not alter the semantics of any of the MPI func-
tions, and fully supports all of MPI-1. The checkpoint/-
restart system has been designed in such a way that there
is a clear separation between the checkpoint/restart func-
tionality and MPI-specific functionality in LAM. Also, the
checkpoint/restart system can “plug-in” multiple back-end
checkpointers with minimal changes to the main LAM/MPI
code base, as a result of which there is a wide range of plat-
forms that can potentially be supported by our system. The
current implementation in LAM/MPI uses the BLCR [8]
checkpointer that is available for Linux.

3.1 Checkpointing Approach in LAM/MPI

A checkpoint of an MPI job is initiated by a user or
a batch scheduler by delivering a checkpoint request to
mpirun. The precise mechanism for delivering this re-
quest is implementation-dependent. On receiving this re-
quest, mpirun propagates this request to all the processes
in the MPI job.

LAM/MPI uses a coordinated approach to checkpoint-
ing MPI jobs. The current implementation in LAM sup-
ports a TCP-based communication sub-system (see Sec-
tions 3.2.1 and 4). Upon receiving the checkpoint request
from mpirun, all the MPI processes interact with each
other to guarantee that their local checkpoints will result
in a consistent global checkpoint. In [4], a consistent global
state is described as the set of process states and the states
of their communication channels. The approach adopted in
LAM ensures that all the MPI communication channels be-
tween the processes are empty when a checkpoint is taken.
During restart, all the processes resume execution from their

void bookmark exchange() �
int i;
struct bookmark � bookmarks arr;

for (i = (num procs � myidx � 1), j = 0; j � num procs;
i = (i + 1) % num procs, ++j) �

if (myidx � i) �
/ � send our bookmark status, then receive into

appropriate location in bookmarks array � /
send bookmarks(i);
recv bookmarks(bookmarks arr);�
else if (myidx � i) �
/ � receive remote bookmark status into appropriate

location in bookmarks array, then send � /
recv bookmarks(bookmarks arr);
send bookmarks(i);�

�
�

Figure 2: Staggered all-to-all algorithm used for communi-
cating network status.

saved states, with the communication channels restored to
to their known (empty) states.

The interaction between the processes to clear the data
in the MPI communication channels uses a “staggered all-
to-all” algorithm over out-of-band communication channels
that are available in LAM, as shown in Figure 2. This al-
gorithm starts with each process choosing a unique peer to
exchange information about how much data it has sent to
and received from that peer. This exchange then continues
with other peers in increasing order of ranks in a circular
fashion until each process has exchanged this information
with its immediate lower-ranked peer. Then, based on this
information, each process receives the remaining data from
the MPI communication channels and all the in-flight data
are drained.

The LAM checkpoint algorithm is summarized below.
mpirun acts as a coordination point between all processes
of an MPI application, and is the process signaled by the
run-time system or user when a checkpoint is to be initiated.

1. mpirun: receives a checkpoint request from a user or
batch scheduler.

2. mpirun: propagates the checkpoint request to each
MPI process.

3. mpirun: indicates that it is ready to be checkpointed.

4. each MPI process: coordinates with the others to
reach a consistent global state in which the MPI job
can be checkpointed. For example, processes using

4



TCP for MPI message passing drain in-flight messages
from the network to achieve a consistent global state.

5. each MPI process: indicates that it is ready to be in-
dividually checkpointed.

6. underlying checkpointer: saves the execution con-
text of each process to stable storage.

7. each MPI process: continues execution after the
checkpoint is taken.

The following sequence of events occurs at restart:

1. mpirun: restarts all the processes from the saved pro-
cess images.

2. each MPI process sends its new process information
to mpirun

3. mpirun: updates the global list containing informa-
tion about each process in the MPI job and broadcasts
it to all processes.

4. each MPI process: receives information about all the
other processes from mpirun.

5. each MPI process: re-builds its communication chan-
nels with the other processes.

6. each MPI process: resumes execution from the saved
state.

This algorithm has been successfully implemented using
the BLCR [8] checkpointer. The details of the implementa-
tion are given in Section 4.

3.2 LAM/MPI Architecture

LAM/MPI is designed with two major layers: the LAM
layer and the MPI layer, as shown in Figure 3. The LAM
layer provides a framework and run-time environment upon
which the MPI layer executes. The LAM layer provides
services such as message passing, process control, remote
file access, and I/O forwarding. The MPI layer provides the
MPI interface and an infrastructure for direct, process-to-
process communication over high-speed networks.

LAM provides a daemon-based run-time environment
(RTE). A user-level daemon (the lamd) is used to provide
many of the services needed for the MPI RTE. The lam-
boot command is used to start a lamd on every node at
the beginning of an execution. At the end of an execution
session, these lamds are killed using the lamhalt com-
mand.

The lamds provide process control for all MPI jobs exe-
cuted under LAM/MPI. mpirun launches an MPI applica-
tion by sending a request to the appropriate daemons, which
in turn fork()/exec() the application. When an ap-
plication terminates, the daemons are notified through the
standard Unix SIGCHLD mechanisms, and they relay this

User Application

MPI Layer

Operating System

LAM Layer

Figure 3: The layered design of LAM/MPI.

 mpirun

 MPI app

lamd

Node 0

 MPI app

Node 1

lamd

out−of−band communication channel
MPI point−to−point communication channel

TCP
socket

Figure 4: A two-way MPI job on two nodes.

information back to mpirun. The LAM daemons also pro-
vide message-passing services over UDP channels.

The MPI library consists of two layers. The upper layer
is portable and independent of the communication sub-
system (i.e., MPI function calls and accounting utility func-
tions). The lower layer consists of a modular framework for
components called SSI (see Section 3.2.1). One such com-
ponent type is the MPI Request Progression Interface (RPI),
which provides device-dependent point-to-point message-
passing between the MPI peer processes. LAM/MPI in-
cludes RPIs that implement message-passing using TCP,
shared memory, gm (the low-level message-passing sys-
tem for Myrinet networks), and the message-passing service
provided by the lamds. Figure 4 shows the LAM/MPI RTE
for a two-way MPI job running on two nodes and using the
TCP RPI.

3.2.1 System Services Interface

LAM/MPI has recently been redesigned to provide a com-
ponent framework for various services provided by the
LAM infrastructure. This framework — the System Ser-
vices Interface (SSI) — is composed of a number of com-
ponent types, each of which provides a single service to the
LAM RTE or MPI implementation [32]. Each SSI type can
have one or more run-time selectable instances available.
Component instances are implemented as plug-in modules,
and are chosen at run-time, either automatically by the SSI
infrastructure or manually by the user, allowing a particu-
lar version of LAM/MPI to support multiple underlying in-

5



LAM/MPI SSI Framework

MPI API

CRRPI

Figure 5: The LAM SSI component architecture has mul-
tiple different component types. At run-time, module in-
stances will be chosen from each component type.

frastructures. Currently, there are SSI interfaces for launch-
ing the LAM RTE, MPI device-dependent point-to-point
communication layer, MPI collective communication algo-
rithms, and checkpoint/restart of MPI applications. Figure 5
shows the SSI framework, and how an MPI application can
choose between modules of each component type at run-
time.

The two component types shown in Figure 5 are the
Request Progression Interface (RPI), and checkpoint/restart
(CR). The RPI component type is responsible for all MPI
point-to-point communications. The CR component type is
the sole interface to the back-end checkpointing system to
actually perform checkpoint and restart functionality.

Although LAM has multiple RPI modules available for
selection at run-time, there is currently only one CR mod-
ule available: blcr, which utilizes the BLCR single-node
checkpointer (see Section 3.3). The design and implemen-
tation of the CR SSI and the blcr module were the main
focuses of this work.

For an MPI job to be checkpointable, it must have a valid
CR module and each of the other SSI modules that it has
chosen at run-time must support some abstract checkpoint/-
restart functionality. The internal SSI checkpoint/restart in-
terfaces were carefully designed to preserve strict abstrac-
tion barriers between the CR SSI and the other SSI modules.
Hence, the strict separation of back-end checkpointing ser-
vices and communication allows new back-end checkpoint-
ing systems to be “plugged-in” simply by providing a new
CR SSI module; the existing RPI modules (and other SSI
component types) will be able to utilize its services with no
modifications.

3.2.2 The CR SSI

At the start of execution of an MPI job, the SSI framework
chooses the set of modules from each SSI component type
that will be used. In the case of the CR SSI, it determines
whether checkpoint/restart support was requested, and if so,

a CR module is selected to run (in this case, it is blcr since
it is the only module available).

All modules in the CR SSI provide a common set of APIs
to be used by the MPI layer and another set of APIs that can
be used by mpirun. The detailed design of the CR SSI
component type is described in [28]. Broadly, these APIs
provide the following functionality:

� initialize: used by the MPI layer to attach to the under-
lying checkpointer, and register callback(s) that will be
invoked at checkpoint.

� suspend: used by the MPI application thread to sus-
pend execution when it is interrupted by the callback
thread (see Section 4.1).

� disable checkpoint: used by mpirun to enter a crit-
ical section during which it cannot be interrupted by a
checkpoint request.

� enable checkpoint: used by mpirun to exit a critical
section and allow incoming checkpoint requests.

� finalize: used by the MPI layer to perform cleanup
actions and detach from the underlying checkpointer.

Most of the work in the CR SSI is done in a separate
thread to allow preparation for checkpoint to happen asyn-
chronously without blocking the execution of the main ap-
plication thread. In the blcr module, this thread is created
by the BLCR checkpointer when a callback is registered
during the module’s initialize action. However, the design
of the CR SSI type does not require the underlying check-
pointer to provide this thread. If a checkpointer does not im-
plicitly provide a separate thread for callbacks, the module
itself can create this extra thread during initialize and block
its execution until a checkpoint request arrives. This design
strategy serves to reduce the requirements imposed on the
underlying checkpointing systems, thereby potentially in-
creasing the range of checkpointers that can be supported.

3.2.3 The RPI SSI

To support checkpointing, an RPI module must have the
ability to generically “prepare for checkpoint,” “continue
after checkpoint,” and “restore from checkpoint”. A check-
pointable RPI module must therefore provide API functions
to perform this functionality. The following functions will
be invoked from the thread-based callback in the CR SSI:

� checkpoint: invoked when a checkpoint request
comes in, usually to consume any in-flight messages.

� continue: invoked to perform any operations that
might be required when a process continues execution
after a checkpoint is taken.

6



� restart: invoked to re-establish connections and any
other operations that might be required when a process
restarts execution from a saved state.

Note that these functions are independent of which back-
end checkpointing system is used; for example, the actions
required for the TCP RPI to checkpoint, continue and restart
are the same regardless of which CR SSI module is selected.
The detailed design of the RPI SSI is described in [31].

3.3 The BLCR Checkpointer

The Berkeley Lab’s Linux Checkpoint/Restart project
(BLCR) [8] is a robust, kernel-level checkpoint/restart im-
plementation. It can be used either as a stand-alone sys-
tem for checkpointing applications on a single node, or by
a scheduling system or parallel communication library for
checkpointing and restarting parallel jobs running on mul-
tiple nodes. BLCR is implemented as a Linux kernel mod-
ule (for recent 2.4 versions of the kernel, such as 2.4.18)
and a user-level library. A kernel module implementation
has the benefit that it allows BLCR to be easily deployed
by new users without requiring them to patch, recompile,
and reboot their kernel. While the current implementation
of BLCR only supports checkpointing of single processes
(including multi-threaded processes), checkpointing of pro-
cess groups, sessions, and a full range of Unix tools will be
supported in the future.

BLCR provides a simple user-level interface to li-
braries/applications that need to interact with checkpoint/-
restart. It provides a mechanism to register user-level call-
back functions that are triggered whenever a checkpoint oc-
curs, and that continue when the process restarts (or a peri-
odic checkpoint for backup purposes completes). Two kinds
of callbacks can be registered: signal-based callbacks that
execute in signal-handler context, and thread-based call-
backs that execute in a separate thread. These callbacks
allow the application to shutdown its network activity (and
perform analogous actions on some other uncheckpointable
resource) before a checkpoint is taken, and restore them
later. Callbacks are designed to be written as shown in Fig-
ure 6.

BLCR also provides user-level code with “critical sec-
tions” to allow groups of instructions to be performed atom-
ically with respect to checkpoints. This allows the applica-
tions to ensure that special cases such as network initial-
ization are not interrupted by a checkpoint. In some cases,
such atomicity is not merely a matter of convenience but is
vital for correct program operation.

4 Implementation Details

The checkpoint/restart implementation in LAM/MPI re-
lies on the availability of a message-passing service pro-

void callback(void � data ptr) �
struct my data � pdata = (struct my data � ) data ptr;
int did restart;

/ � Do checkpoint � time shutdown logic � /

/ � Tell system to take the checkpoint � /
did restart = cr checkpoint();

if (did restart) �
/ � Actions to restart from a checkpoint � /�
else �
/ � Actions to continue after a checkpoint � /�

�

Figure 6: Template for signal-based and thread-based call-
back functions. The state of the entire process (including
the callback’s execution) is saved in the cr checkpoint
call, and restored at restart or after checkpoint is complete.

vided by the LAM layer. This service is used for out-of-
band signaling and communication between the processes
during checkpoint and restart. Although they play an im-
portant role during a checkpoint, the lamds are not a logical
part of an MPI application, and are themselves not check-
pointed. The design of this system also presupposes the
availability of a threads package on the target platform. Cur-
rently, support for checkpoint/restart has been implemented
only for a modified version of the TCP RPI. However, this
functionality will soon be extended to include all the RPIs.
This section describes the details of the implementation in
the context of the sequence of steps that occur in the system
during checkpoint, upon continuing from a checkpoint, and
when restarting from saved context.

4.1 Checkpoint

Since mpirun is the startup coordination point for MPI
processes, it was the natural choice to serve as the entry
point for a checkpoint request to be sent to a LAM/MPI job.
At the start of execution, mpirun invokes the initialization
function of the blcr checkpoint/restart SSI module to reg-
ister both thread-based and signal-based callback functions
with BLCR. The thread-based callback is required to prop-
agate the checkpoint requests to the MPI processes. This
cannot be done in signal context because the propagation of
the checkpoint request uses some non-reentrant C library
calls, and the use of non-reentrant functions from signal
context can cause deadlocks.

When a checkpoint request is sent by a user or batch
scheduler (by invoking the BLCR utility cr checkpoint

7



with the process ID of mpirun), it triggers the callbacks
to start executing. The thread-based callback computes the
names under which the images of each MPI process will be
stored to disk and saves the process topology of the MPI
job (called “application schema” in LAM) in mpirun’s
address space, that will be used for restoring the applica-
tions at restart. It then signals all the MPI processes about
the pending checkpoint request by instructing the relevant
lamds to invoke cr checkpoint for every process that
is a part of this MPI job. Once this is done, the callback
thread indicates that mpirun is ready to be checkpointed.

In the MPI library, MPI INIT has been modified to in-
voke the initialization function of the blcr checkpoint/-
restart SSI module; this function registers thread-based and
signal-based callbacks with BLCR, that will be executed
when a checkpoint request arrives. To avoid race condi-
tions, the current implementation defines that it is not pos-
sible to checkpoint an MPI job in which one of the processes
has already completed executing MPI FINALIZE. In order
to prevent this situation from occurring, a barrier synchro-
nization has been introduced in MPI FINALIZE.

When a checkpoint request is received by an MPI pro-
cess frommpirun, the threaded callback in the blcrmod-
ule starts executing. The use of a threaded callback here
allows the application to continue even when the thread-
based callback starts executing. Another reason for using
a threaded callback is the non-reentrancy issue mentioned
above. Consequently, we have to explicitly synchronize
these threads so that the application thread does not exe-
cute an MPI call when the callback thread is quiescing the
network.

Synchronization of threads is already done in LAM/MPI
when the thread level is MPI THREAD SERIALIZED, ef-
fectively preventing multiple threads from making MPI
calls simultaneously. This is accomplished by placing a mu-
tex at the entry and exit points of all MPI library calls. This
same mechanism is reused in the checkpoint/restart imple-
mentation to prevent the application thread from calling
into the MPI library when the callback thread is perform-
ing checkpoint or restart functions, and vice versa. Hence,
all MPI applications that request checkpoint/restart sup-
port are assigned a thread level of at least MPI THREAD -
SERIALIZED.

At checkpoint time, the callback thread in each process
waits for the application thread to exit its current MPI call
(if any), and then instructs the RPI to prepare itself for
checkpoint. It is possible, however, that the application
thread could be blocking on an MPI operation whose corre-
sponding peer operation has not been posted. To handle this
case, the callback thread of that process signals the applica-
tion thread to interrupt its blocking behavior. At this point,
the application thread realizes that it has been interrupted
by the callback thread, and yields control to it by releas-

Time CR Thread App Thread
���

sleep execute outside MPI
library

����� � wakeup
����� � acquire mutex
� �����

prepare RPI for
checkpoint

call MPI function,
block on mutex

�������
checkpoint

� ����	
RPI continue/restart

������

release lock

� �����
sleep acquire lock, execute

MPI call

Figure 7: Sequence of events when the application thread
is executing outside the MPI library when a checkpoint re-
quest arrives.

ing the mutex. The callback thread can then trigger the RPI
to quiesce the network, and perform any other operations
that are required to prepare the process to be checkpointed.
At restart time, the interrupted MPI call is automatically
resumed without the user being aware of the interruption.
Figures 7 and 8 depict the synchronization that is enforced
between the application callback threads.

In order to drain the in-flight data on the network, each
process needs to know how much data has been sent across
a TCP socket by its peer. This is accomplished by having
each MPI process keep a bookmark for each of its peers.
A bookmark is a pair of integers containing the number of
bytes it has sent to and received from each peer.

At checkpoint time, the callback threads in each process
exchange the “sent” bookmarks with each of their peers us-
ing LAM’s out-of-band channel (see Figure 2). If the “sent”
bookmark received from a peer does not match the “re-
ceived” bookmark that the process has for that peer, then
there must be some messages on the network that have not
yet been received. If this is the case, the callback threads
call the RPI modules to progress the receives in their inter-
nal message-passing state machines and consume data from
TCP sockets until each “received” bookmark matches its
corresponding “sent” bookmark. The RPI’s state machine
executes the normal progression of MPI receive requests
by matching the posted receives with incoming messages,
and creating unexpected message buffers for unmatched in-
coming messages. For example, if a process had posted an
MPI receive before checkpoint and the message arrives af-
ter the quiesce process begins, it will be received into the
actual destination buffer when the RPI drains the network.
Hence, no secondary buffers or rollback mechanisms need
to be utilized [10]. At this time, MPI send requests are pre-
vented from making progress so that no more messages are

8



Time CR Thread App Thread
���

sleep call MPI function, ac-
quire mutex

��� � � wakeup execute blocking sys-
tem call in MPI library

��� � � try to acquire mu-
tex, fail

��� ���
signal app thread

��� ���
system call interrupted,
release mutex

� � ��	
acquire mutex block on mutex

��� ��

prepare for check-
point

� � ���
checkpoint

��� � � continue/restart
� � ���

release lock
��� � �

�
sleep acquire lock, resume

MPI function

Figure 8: Sequence of events when the application thread
is executing a blocking system call inside the MPI library
when a checkpoint request arrives.

sent. When all the bookmarks match, the RPI has drained
all the in-flight data on the network, and the callback thread
in each process indicates that the process is ready to be
checkpointed. The underlying checkpointer then writes the
process image to stable storage. Figure 9 depicts the ex-
change of bookmarks and the draining of in-flight data for
a two-process MPI job.

4.2 Continue

After checkpoints are taken, the MPI processes are al-
lowed to continue execution. At checkpoint time, the TCP
sockets are not closed so the MPI processes need not per-
form additional work to re-establish connections or re-
negotiate per-job parameters when they continue from a
checkpoint. The MPI library is unlocked and control is sim-
ply returned to the application thread and processing contin-
ues as if nothing happened.

4.3 Restart

When a checkpointed MPI job is restarted by invok-
ing the BLCR utility cr restart with the name of
mpirun’s saved process context, the signal-based callback
function exec()s a new mpirun. mpirun restarts all
the MPI processes from the application schema that was
saved at checkpoint-time, with the same process-topology
as before checkpointing. A signal-based callback is re-
quired here because invoking exec() from another thread

 app (B)

lamd

Node 0

 app (A)

lamd

Node 1

"sent"
bookmarks

 app (B)

 app (A)

pending
MPI messages

Node 0

Node 1

(1) (2)

Figure 9: Clearing the communication channels before
checkpoint. (1) processes A and B exchange the “sent”
bookmarks that they have for each other using the out-of-
band channel. (2) processes A and B receive data from the
in-band channel until their “received” bookmarks match the
“sent” bookmarks sent by the peer in (1).

would result in a changed process ID on current Linux ker-
nels (version 2.4 or earlier).

When the MPI processes resume execution, the thread-
based callbacks still have the MPI library locked, with
the application threads either blocked at the entry point
to an MPI function, safely interrupted in their MPI func-
tion calls, or running entirely outside the MPI library. The
checkpoint/restart implementation in LAM/MPI does not
rely on the existence of support for transparent migration of
sockets in the back-end checkpointer for performance rea-
sons and to minimize the requirements on the underlying
system. Hence, the threaded callback re-establishes new
TCP sockets with each of its MPI peers. Once these connec-
tions have been re-established, the MPI library is unlocked,
the callback thread completes execution, and the application
thread continues.

5 Communication Performance

Experiments were conducted to measure the com-
munication and computation performance of the check-
point/restart system in LAM/MPI 7.0 using NetPIPE (A
Network Protocol Independent Performance Evaluator)
[29] and the NAS Parallel Benchmarks [11] on a Linux clus-
ter consisting of 208 2.4 GHz Xeon processors with Fast
Ethernet interconnect. NetPIPE is a program that performs
ping-pong tests, bouncing messages of increasing size be-
tween two processes across a network in order to measure
communication performance. The NAS Parallel Bench-
marks is a suite of application kernels that test several dif-

9



10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

Block size (bytes)

B
an

dw
id

th
 (

M
bp

s)

raw TCP
TCP RPI (THREAD SINGLE)
TCP RPI (THREAD SERIALIZED)
CR−enabled TCP RPI (THREAD SERIALIZED)

Figure 10: Performance comparison of raw TCP, plain
TCP RPI (MPI THREAD SINGLE and MPI THREAD -
SERIALIZED) and TCP RPI with checkpoint/restart
(MPI THREAD SERIALIZED) using NetPIPE.

ferent computational and communication patterns in paral-
lel environments.

Experiments were conducted to measure the communi-
cations overhead of adding checkpoint/restart capability to
LAM/MPI. First, the drop in performance caused by the
addition of checkpoint/restart support to the TCP RPI was
measured. NetPIPE was used to compare the throughput of
plain TCP RPI with that of the TCP RPI with checkpoint/-
restart. The graph of throughput versus block-size is shown
in Figure 10. The percentage of bandwidth loss in the
checkpoint/restart-enabled TCP RPI as compared to plain
TCP RPI is shown in Figure 11.

There are three reasons for the drop in performance of
the TCP RPI with the addition of checkpoint/restart sup-
port. First, there is a “fast” mode of communication in
the RPI layer such that in certain cases when the MPI re-
quest queues are empty, LAM bypasses the entire RPI state
machine and directly uses sends and receives for perfor-
mance reasons. The current implementation of the check-
point/restart enabled TCP RPI does not support this “fast”
mode of communication, and based on running tests with
the “fast” mode disabled in the TCP RPI, it has been de-
termined that this accounts for a part of the deterioration
in performance that is seen in the graphs (see Figure 11.
Second, when an MPI job requests checkpoint/restart sup-
port, the thread level is automatically upgraded to MPI -
THREAD SERIALIZED. In this situation, LAM uses mu-
texes to synchronize the threads, and this leads to additional
overhead due to the lock/unlock operations that need to be
performed every time an MPI call is made. A third reason
for the degradation in performance is the additional book
keeping that is done in the RPI layer to support checkpoint/-
restart. Since checkpoint/restart functionality adds a con-

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Block size (bytes)

P
er

ce
nt

ag
e 

D
ro

p 
in

 B
an

dw
id

th

TCP/serialized/fast vs. CRTCP/serialized/no−fast
TCP/serialized/fast vs. TCP/serialized/no−fast

Figure 11: Performance degradation of checkpoint/restart-
enabled TCP RPI (MPI THREAD SERIALIZED) and
plain TCP RPI (MPI THREAD SERIALIZED) without
“fast” mode, both relative to plain TCP RPI (MPI -
THREAD SERIALIZED) with “fast” mode.

stant overhead to the MPI layer, performance drop is maxi-
mum for small sized messages (about 2 percent). For mes-
sages larger than 1KB, the performance degradation is less
than 0.5 percent.

To assess the impact of LAM’s checkpoint/restart infras-
tructure on the computational performance of parallel appli-
cations, the entire suite of NAS Parallel Benchmarks (prob-
lem size class A) were run on four nodes both with and
without checkpoint/restart support. There was no discern-
able difference in the wall-clock execution time of any of
the benchmark applications.

6 Future Work

Future work on this project is planned in several direc-
tions. Our first priority for future work is to implement the
“fast” mode of communication in the modified TCP RPI and
extend checkpoint/restart support to all the the remaining
RPIs so that it will be possible to checkpoint/restart all MPI-
1 jobs running in LAM/MPI. The next step will be to extend
the implementation to include MPI-2 functionality. Later,
we plan to look into the possibility of building checkpoint/-
restart SSI modules on top of other back-end checkpoint-
ing systems, possibly including Condor [23], Libckpt [25]
and CRAK [41], to extend our implementation to multiple
platforms. All of these efforts will be complemented with
extensive performance testing and tuning to understand and
identify run-time bottlenecks. Another possibility for future
work in this project is full support for process migration.
Our current implementation lets us restore an entire check-
pointed job on a different set of nodes in some cases, but

10



it does not permit us to migrate a subset of the processes
while the others are still running. While support for “real-
time” migration would be contingent upon the underlying
system’s ability to do this, additional work also needs to
be done in the MPI library itself to make this possible. Fi-
nally, a long term goal is to investigate the implementation
of an uncoordinated approach to checkpointing MPI jobs in
LAM/MPI.

7 Conclusions

This paper presented a checkpoint/restart implementa-
tion for MPI jobs that has been implemented in LAM/MPI
using BLCR [8] as the underlying checkpointer. This imple-
mentation adopts a coordinated approach to checkpointing
jobs. The performance of this system was tested to measure
the overhead of adding checkpoint/restart functionality, and
the time to checkpoint MPI jobs. Experiments have shown
that the drop in performance caused by the introduction of
additional functionality in the MPI layer and the communi-
cation sub-system is negligible, and the time to checkpoint
jobs increases linearly with the number of processes.

The checkpoint/restart system and all other modifica-
tions to the LAM infrastructure that grew out of this project
are currently available in LAM’s CVS tree. Anonymous
read-only access is available to users who wish to utilize the
latest features in LAM/MPI. The checkpoint/restart func-
tionality is also scheduled to be included in the upcoming
LAM/MPI 7.0 release. More information on the project can
be found on the web:

http://www.lam-mpi.org/

Acknowledgments

This work was supported by a grant from the Lilly En-
dowment, by National Science Foundation grant 0116050,
and by the U.S. Department of Energy under Contract No.
DE-AC03-76SF00098. Brian Barrett was supported by a
Department of Energy High Performance Computer Sci-
ence fellowship.

References

[1] Top500 supercomputer list, November 2002.
http://www.top500.org/.

[2] D. Briatico, A. Ciuffoletti, and L. Simoncini. A distributed
domino-effect free recovery algorithm. In Proceedings of
the Fourth International Symposium on Reliability in Dis-
tributed Software and Databases, pages 207–215, 1984.

[3] G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster
Environment for MPI. In J. W. Ross, editor, Proceedings of

Supercomputing Symposium ’94, pages 379–386. University
of Toronto, 1994.

[4] K. M. Chandy and L. Lamport. Distributed Snapshots:
Determining Global States of Distributed Systems. ACM
Transactions on Computing Systems, 3(1):63–75, 1985.

[5] Y. Z. Chang, K. S. Ding, and J. J. Tsay. Efficient Imple-
mentation of Message Passing Interface on Local Area Net-
works, 1996.

[6] Y. Chen, K. Li, and J. S. Plank. CLIP: A checkpointing
tool for message-passing parallel programs. In ACM, ed-
itor, SC’97: High Performance Networking and Comput-
ing: Proceedings of the 1997 ACM/IEEE SC97 Conference:
November 15–21, 1997, San Jose, California, USA., New
York, NY 10036, USA and 1109 Spring Street, Suite 300,
Silver Spring, MD 20910, USA, 1997. ACM Press and IEEE
Computer Society Press.

[7] W. R. Dieter and J. E. L. Jr. A user-level checkpointing li-
brary for POSIX threads programs. In Symposium on Fault-
Tolerant Computing, pages 224–227, 1999.

[8] J. Duell, P. Hargrove, and E. Roman. The Design and Im-
plementation of Berkeley Lab’s Linux Checkpoint/Restart,
2002.

[9] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel. The
performance of consistent checkpointing. In Proceedings of
the 11th Symposium on Reliable Distributed Systems, pages
39–47, Oct. 1992.

[10] M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson.
A survey of rollback-recovery protocols in message pass-
ing systems. Technical Report CMU-CS-96-181, School of
Computer Science, Carnegie Mellon University, Pittsburgh,
PA, USA, 1996.

[11] D. H. B. et al. The NAS Parallel Benchmarks. Technical
Report RNR-94-007, NASA Ames Research Center, Mof-
fett Field, CA, 1994.

[12] A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine,
E. Lusk, W. Saphir, T. Skjellum, and M. Snir. MPI-2:
Extending the Message-Passing Interface. In L. Bouge,
P. Fraigniaud, A. Mignotte, and Y. Robert, editors, Euro-Par
’96 Parallel Processing, number 1123 in Lecture Notes in
Computer Science, pages 128–135. Springer Verlag, 1996.

[13] Genias Software GmbH. CODINE User’s Guide, 1993.

[14] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,
B. Nitzberg, W. Saphir, and M. Snir. MPI — The Complete
Reference: Volume 2, the MPI-2 Extensions. MIT Press,
1998.

[15] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI message
passing interface standard. Parallel Computing, 22(6):789–
828, Sept. 1996.

[16] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable
Parallel Programming with the Message Passing Interface.
MIT Press, 1994.

[17] W. Gropp, E. Lusk, and R. Thakur. Using MPI-2: Advanced
Features of the Message Passing Interface. MIT Press, 1999.

11



[18] W. D. Gropp and E. Lusk. User’s Guide for mpich, a
Portable Implementation of MPI. Mathematics and Com-
puter Science Division, Argonne National Laboratory, 1996.
ANL-96/6.

[19] R. Koo and S. Toueg. Checkpointing and rollback-recovery
for distributed systems. Technical Report TR85-706, Cor-
nell University, Computer Science Department, 1985.

[20] W.-J. Li and J.-J. Tsay. Checkpointing Message-Passing
Interface (MPI) Parallel Programs. In Proceedings of the
Pacific Rim International Symposium on Fault-Tolerant Sys-
tems, 1997.

[21] M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of
Idle Workstations. In Proceedings of the 8th International
Conference of Distributed Computing Systems, pages 104–
111, 1988.

[22] M. Litzkow and M. Solomon. The Evolution of Condor
Checkpointing, 1998.

[23] M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny.
Checkpoint and Migration of UNIX Processes in the Condor
Distributed Processing System. Technical Report CS-TR-
1997-1346, University of Wisconsin, Madison, Apr. 1997.

[24] Message Passing Interface Forum. MPI: A Message Passing
Interface. In Proc. of Supercomputing ’93, pages 878–883.
IEEE Computer Society Press, November 1993.

[25] J. S. Plank, M. Beck, G. Kingsley, and K. Li. Libckpt:
Transparent Checkpointing under Unix. In Proceedings of
the 1995 Winter USENIX Technical Conference, 1995.

[26] B. Randell. Systems structure for software fault tolerance.
IEEE Transactions on Software Engineering, 1(2):220–232,
1975.

[27] D. L. Russell. State restoration in systems of communicat-
ing processes. IEEE Transactions on Software Engineering,
6(2):183–194, Mar. 1980.

[28] S. Sankaran, J. M. Squyres, B. Barrett, and A. Lumsdaine.
Checkpoint-restart support system services interface (SSI)
modules for LAM/MPI. Technical Report TR578, Indiana
University, Computer Science Department, 2003.

[29] Q. O. Snell, A. R. Mikler, and J. L. Gustafson. NetPIPE: A
Network Protocol Independent Performace Evaluator, 1996.

[30] M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and
J. Dongarra. MPI: The Complete Reference. MIT Press,
Cambridge, MA, 1996.

[31] J. M. Squyres, B. Barrett, and A. Lumsdaine. Request
progression interface (RPI) system services interface (SSI)
modules for LAM/MPI. Technical Report TR579, Indiana
University, Computer Science Department, 2003.

[32] J. M. Squyres, B. Barrett, and A. Lumsdaine. The sys-
tem services interface (SSI) to LAM/MPI. Technical Report
TR575, Indiana University, Computer Science Department,
2003.

[33] J. M. Squyres and A. Lumsdaine. A Component Architec-
ture for LAM/MPI. In Proceedings, Euro PVM/MPI, Octo-
ber 2003.

[34] G. Stellner. CoCheck: Checkpointing and Process Migration
for MPI. In Proceedings of the 10th International Parallel
Processing Symposium, Honolulu, HI, 1996.

[35] Y. Tamir and C. H. Sequin. Error recovery in multicomput-
ers using global checkpoints. In Proceedings of the 1984
International Conference on Parallel Processing, pages 32–
41, Bellaire, Michigan, Aug. 1984. IEEE.

[36] The BlueGene/L Team. An Overview of the BlueGene/L
Supercomputer, 2002.

[37] The LAM Team. Getting Started with LAM/MPI. Uni-
versity of Notre Dame, Department of Computer Science,
http://www.lam-mpi.org/, 1998.

[38] Z. Tong, R. Y. Kain, and W. T. Tsai. Rollback recovery
in distributed systems using loosely synchronized clocks.
IEEE Transactions on Parallel and Distributed Systems,
3(2):246–251, 1992.

[39] Y.-M. Wang, P.-Y. Chung, I.-J. Lin, and W. K. Fuchs. Check-
point space reclamation for uncoordinated checkpointing in
message-passing systems. IEEE Transactions on Parallel
and Distributed Systems, 6(5):546–554, 1995.

[40] A. Wong, L. Oliker, W. Kramer, T. Kaltz, and D. Bailey.
System Utilization Benchmark on the Cray T3E and IBM
SP, April 2000.

[41] H. Zhong and J. Nieh. CRAK: Linux checkpoint / restart as
a kernel module. Technical Report CUCS-014-01, Depart-
ment of Computer Science, Columbia University, 2001.

12


